1.888.900.DRIZ (3749)
The Driz Group
  • Managed Services
    • SME CyberShield
    • Web Application Security >
      • Schedule WAF Demo
    • Virtual CISO
    • Compliance >
      • SOC1 & SOC2
      • GDPR
    • Third-Party Risk Management
    • Vulnerability Assessment >
      • Free Vulnerability Assessment
  • About us
    • Testimonials
    • Meet The Team
    • Resources
    • In the news
    • Careers
    • Subsidiaries
  • Contact
    • Newsletter
  • How WAF Works
  • Blog
  • Managed Services
    • SME CyberShield
    • Web Application Security >
      • Schedule WAF Demo
    • Virtual CISO
    • Compliance >
      • SOC1 & SOC2
      • GDPR
    • Third-Party Risk Management
    • Vulnerability Assessment >
      • Free Vulnerability Assessment
  • About us
    • Testimonials
    • Meet The Team
    • Resources
    • In the news
    • Careers
    • Subsidiaries
  • Contact
    • Newsletter
  • How WAF Works
  • Blog

Cybersecurity Blog

Thought leadership. Threat analysis. Cybersecurity news and alerts.

4/10/2023

0 Comments

Driving on the Edge: The Alarming Rise of Automotive Hacking and the Race to Secure Our Vehicles

 
cybercriminals is hacking a car

In an era of unprecedented technological connectivity, our vehicles have transformed into 

sophisticated machines are teeming with digital features and capabilities. Cars have evolved into "smart" devices on wheels, equipped with an array of sensors, software, and network connections that enhance our driving experience, improve safety, and provide convenience. However, this newfound connectivity comes a growing and alarming threat: automotive hacking. No longer limited to the realm of science fiction, automotive hacking has emerged as a genuine and pressing concern, raising questions about the security and privacy of our vehicles.

Automotive hacking refers to the practice of exploiting vulnerabilities in a vehicle's computer systems, networks, or digital functions to gain unauthorized access, manipulate controls, or extract sensitive data. The phenomenon has become increasingly prominent as the automotive industry embraces the Internet of Things (IoT) and connected car technologies. The prospect of a malicious actor taking control of a moving vehicle or intercepting sensitive information is profoundly unsettling and potentially catastrophic.

This article explores the alarming rise of automotive hacking, delving into the risks and implications it poses for drivers, passengers, automakers, and society at large. It examines the techniques hackers employ, the vulnerabilities they exploit, and the impact of successful attacks. 

Crucially, it also highlights the commendable efforts of the automotive industry, cybersecurity experts, and regulators to stay ahead of this rapidly evolving threat and ensure the security of our vehicles. As we navigate the digital landscape of the 21st century, the race to secure our vehicles has never been more critical, and the stakes have never been higher.

The Emergence of Automotive Hacking

Automotive hacking refers to the unauthorized access and exploitation of a vehicle's electronic systems, communication networks, or digital functions. These attacks can take various forms, with hackers employing different techniques to achieve their objectives. Common types of automotive hacking attacks include:

  • Remote hacking: Hackers exploit vulnerabilities in a vehicle's connectivity features to access its systems and manipulate controls.
  • Key fob attacks: Hackers intercept and replicate signals from a vehicle's key fob to unlock doors or start the engine without the physical key.
  • On-board diagnostics (OBD) port attacks: Hackers physically connect to a vehicle's OBD port to access its internal network and manipulate vehicle controls.

The evolution of automotive technology has brought about a paradigm shift in vehicle design and capabilities. Modern vehicles have sophisticated software, sensors, and wireless connectivity, enabling various advanced features, from infotainment systems to driver assistance technologies. 

While these advancements have undoubtedly enhanced the driving experience, they have also expanded the attack surface for hackers, exposing new vulnerabilities in vehicles' interconnected systems.

The rise of automotive hacking has been accompanied by several notable real-world incidents that have spotlighted the issue. For example, according to a report by Upstream, in 2022, the number of automotive API attacks has increased by 380%, accounting for 12% of total incidents, despite OEMs employing advanced IT cybersecurity protections.

Some incidents have had a limited impact, such as a breach targeting systems in the US Army's troop carrier vehicles. However, others have affected millions of customers, such as a breach announced by Toyota that exposed the data of 3.1 million customers. The industry has also seen the proliferation of bug bounty programs. Vehicle manufacturers and suppliers offer financial rewards to ethical hackers, known as "white hat" hackers, for finding and reporting system vulnerabilities. For instance, Uber has resolved 1,345 bug reports and paid out over $2.3 million through its bug bounty program. At the same time, Tesla has successfully addressed vulnerabilities found in the Model S key fob through its program.

These incidents highlight the complexity and urgency of addressing automotive hacking and underscore the need for a multi-faceted approach to securing vehicles in an increasingly connected world.

The Risks and Consequences of Automotive Hacking

The potential dangers of automotive hacking extend beyond simple inconvenience, posing serious safety risks and privacy concerns. Vehicles become increasingly vulnerable to cyberattacks as they become more connected to the internet and other devices. Automotive hackers can access a vehicle's data and systems to manipulate controls, steal sensitive information, and even blackmail manufacturers. Hackers can exploit vulnerabilities in a vehicle's software to gain control over its systems, perform actions such as disabling safety features, controlling acceleration or braking, and even causing accidents. Additionally, the theft of personal information, such as GPS data, driving patterns, and vehicle registration details, raises significant privacy concerns and increases the risk of identity theft and financial fraud.

The implications of automotive hacking are particularly concerning for developing and deploying autonomous vehicles. As self-driving cars rely on sophisticated software, sensors, and communication systems to operate, they present an attractive target for hackers seeking to exploit vulnerabilities. A successful cyberattack on an autonomous vehicle could have catastrophic consequences, including losing control over the vehicle and endangering passengers, pedestrians, and other road users. As such, the security of autonomous vehicles is paramount for gaining public trust and ensuring this technology's safe and widespread adoption.

The financial and reputational impact of automotive hacking on automakers and other stakeholders can be significant. Cybersecurity incidents can result in costly recalls, legal liabilities, and damage to brand reputation. For example, Toyota suffered a data breach in February, exposing the personal information of 3.1 million customers. Such breaches erode consumer trust, leading to lost sales and decreased market share. Additionally, hackers may use stolen information to create phishing emails, engage in financial fraud, or hold the data for ransom, further increasing the financial burden on affected parties. Manufacturers must invest in comprehensive cybersecurity measures to protect vehicles, data, and customers from evolving cyber threats. This includes conducting vulnerability assessments, updating software regularly, and implementing multi-factor authentication and encryption to secure communications.

As automotive technology continues to evolve and vehicles become increasingly connected and autonomous, addressing the risks and consequences of automotive hacking is paramount for ensuring safety, privacy, and consumer trust in the automotive industry.

The Industry's Response: Innovations in Cybersecurity

In response to the rising threat of automotive hacking, automakers are implementing various cybersecurity measures to safeguard vehicles and protect consumers. These measures include:

Segmentation and Isolation

By creating segmented and isolated networks within vehicles, automakers can prevent unauthorized access to critical systems. This ensures that an attack on one subsystem does not compromise the entire vehicle.

Hardware Security Modules (HSMs)

Automakers integrate HSMs into vehicles to provide cryptographic services, secure key storage, and authentication. HSMs help ensure the integrity and confidentiality of data exchanged within the vehicle and with external systems.

Secure Boot

Secure Boot is a security feature that verifies the authenticity and integrity of software and firmware during the vehicle's startup process. This prevents malicious software from being loaded onto the vehicle's systems.

Penetration Testing

Automakers conduct regular penetration testing to identify and address vulnerabilities in-vehicle systems. This proactive approach helps detect security weaknesses before hackers can exploit them.

Ethical hacking and bug bounty programs play a pivotal role in identifying and addressing vulnerabilities in automotive systems. Ethical hackers, also known as "white hat" hackers, are cybersecurity experts who use their skills to test and assess the security of systems lawfully and responsibly. Automakers and suppliers often collaborate with ethical hackers through bug bounty programs, where financial rewards are offered for identifying and reporting security vulnerabilities. These programs help uncover vulnerabilities that may have been overlooked during the development and testing phases, and they enable automakers to address them before malicious actors can exploit them promptly.

The importance of secure software updates, encryption, and intrusion detection systems cannot be overstated in the realm of automotive cybersecurity:

  • Secure Software Updates: Automakers are implementing over-the-air (OTA) software update mechanisms that allow vehicles to receive security patches and feature enhancements remotely. OTA updates reduce the need for physical dealership visits and ensure vehicles are equipped with the latest security protections.
  • Encryption: Encryption is critical for protecting data transmitted between vehicles, servers, and external devices. Automakers can prevent eavesdropping and unauthorized access to sensitive information by encrypting data.
  • Intrusion Detection Systems (IDS): IDS are deployed in vehicles to monitor network traffic and detect suspicious or malicious activity. IDS can alert drivers or vehicle systems to potential cyberattacks and trigger countermeasures to protect the vehicle.

The automotive industry's investment in cybersecurity innovations demonstrates a commitment to building and maintaining consumer trust. As vehicles continue to evolve and integrate advanced connectivity features, these cybersecurity measures will play an essential role in securing the future of transportation.

Legal and Regulatory Considerations

The current legal and regulatory landscape around automotive hacking recognizes the increasing connectivity of vehicles and the associated cybersecurity risks. As the number of connected vehicles on the road has surged, so too have cyberattacks on vehicles, with 2021 alone seeing half of all auto cyberattacks in history, representing an increase of nearly 140% from the previous year. 

Automakers have been actively working on adding millions more connected vehicles to the roads in the coming years, which means they can be vulnerable to cyberattacks that can compromise personal information, take control of vehicle functions, and potentially provide hackers access to the broader electric grid. Various regulations and standards have been developed to address these challenges to ensure vehicles' cybersecurity and protect consumers. These may include federal and state data protection laws, industry standards for secure software development, communication protocols, and over-the-air updates.

The potential future regulations that could shape the industry's approach to cybersecurity are likely to focus on several key areas. Firstly, ensuring the secure design and development of connected and autonomous vehicles will be paramount. This may include setting security requirements for vehicle communication systems, software updates, and data encryption. 

Secondly, there may be an emphasis on consumer privacy and data protection, with regulations aimed at safeguarding personal information collected by vehicles and ensuring transparency in data handling practices. Lastly, regulations could address the cybersecurity of electric vehicle charging infrastructure and the broader transportation ecosystem as these systems become more interconnected and potentially vulnerable to cyberattacks.

The legal implications for various stakeholders in the realm of automotive hacking are multifaceted. For hackers, unauthorized access to vehicle systems and data breaches can lead to criminal charges under federal and state laws, including the Computer Fraud and Abuse Act (CFAA) and other relevant statutes. 

For automakers, failing to secure vehicles and protect consumer data adequately can result in legal liabilities, regulatory fines, costly recalls, and damage to brand reputation. In addition, automakers may be required to adhere to industry standards and regulatory guidelines for cybersecurity, conduct vulnerability assessments, and disclose cybersecurity risks to consumers and shareholders. For vehicle owners, compromising personal information and vehicle functions can result in privacy violations, financial losses, and safety risks. Vehicle owners have a role to play in maintaining the security of their vehicles by keeping software up to date, securing key fobs, and being vigilant about potential cyber threats.

As automotive technology continues to evolve, legal and regulatory considerations will play a critical role in shaping the industry's approach to cybersecurity, ensuring the safety and privacy of consumers, and fostering innovation and progress in the field of connected and autonomous vehicles.

Consumer Awareness and Empowerment

The importance of consumer awareness of automotive hacking risks must be considered. As vehicles become increasingly connected and equipped with advanced digital features, they become more susceptible to cyber threats. While automakers and cybersecurity experts work diligently to secure vehicles, consumers play a critical role in safeguarding their own safety and privacy. Being informed about the potential risks of automotive hacking, the methods used by hackers, and the steps to take in the event of a suspected cyberattack is crucial. Consumer awareness empowers individuals to take proactive measures to protect their vehicles and data, recognize and respond to potential threats, and make informed decisions about the connected features they choose to use.

Practical advice for vehicle owners to protect themselves from hacking attempts includes the following steps:

  • Keep Software Updated: Ensure that your vehicle's software and firmware are current. Take advantage of the manufacturer's over-the-air (OTA) updates and promptly install any security patches.
  • Secure Key Fobs: Store key fobs in secure locations, such as RFID-blocking pouches, to prevent signal interception and relay attacks. Avoid leaving key fobs in unsecured locations or near external doors and windows.
  • Use Secure Wi-Fi Networks: When connecting your vehicle to a Wi-Fi network, use secure and trusted networks. Avoid using public Wi-Fi hotspots for vehicle connectivity, as they may be more vulnerable to cyberattacks.
  • Limit Data Sharing: Be mindful of the data you share with third-party apps and services connected to your vehicle. Review privacy settings and limit access to personal information and location data when possible.
  • Be Vigilant: Pay attention to any unusual behaviour or warning signs in your vehicle, such as unexpected changes in settings, unusual alerts, or unauthorized access to features. Contact your vehicle manufacturer or dealership for assistance if you suspect a cyberattack.

Consumers play a vital role in advocating for better vehicle security. Consumers can voice their concerns and expectations regarding automotive cybersecurity by engaging with automakers and industry stakeholders. This can include providing feedback on security features, discussing industry standards, and advocating for greater transparency and disclosure of cybersecurity practices. Consumer advocacy helps drive industry improvements, promotes best practices, and shapes the development of new technologies with security and privacy in mind. Ultimately, an informed and engaged consumer base is valuable in enhancing vehicle security and building trust in the age of connected and autonomous vehicles.

 Looking Ahead: The Future of Automotive Hacking

The future of automotive technology promises rapid advancements in connectivity, autonomy, and electrification. As vehicles become more integrated with the Internet of Things (IoT) and capable of over-the-air updates, on-demand features, and autonomous driving, new vulnerabilities and opportunities for hackers may emerge. For example, the increasing reliance on sensors and cameras for driver assistance and autonomous navigation presents potential avenues for hackers to manipulate sensor data or disrupt camera feeds. Additionally, the convergence of vehicle systems with smart city infrastructure and electric vehicle charging networks introduces new complexities and attack vectors that must be addressed. While these advancements offer numerous benefits to consumers and society, they also underscore the importance of robust and forward-looking cybersecurity measures.

Future trends and challenges in automotive cybersecurity may include:

  • The Security of Autonomous Vehicles: Ensuring the cybersecurity of fully autonomous vehicles will be a top priority, as these vehicles rely on complex algorithms and real-time data processing for safe operation. Ensuring the integrity of sensor data, communication channels, and decision-making algorithms will be critical to prevent malicious interference.
  • Supply Chain Security: As vehicles incorporate components and software from various suppliers, securing the automotive supply chain becomes increasingly important. This involves addressing vulnerabilities that may arise from third-party components and ensuring that all suppliers adhere to rigorous security standards.
  • Data Privacy and Regulation: The collection and analysis of vehicle-generated data raise important questions about data privacy and ownership. Future challenges include balancing the need for data-driven innovation with consumer privacy protection and compliance with data protection regulations.
  • Integration with Smart Infrastructure: Securing the broader ecosystem will be challenging as vehicles become more integrated with intelligent transportation infrastructure. This includes securing vehicle-to-infrastructure (V2I) communication and ensuring the resilience of transportation networks.

To stay ahead of emerging threats and build consumer trust, the industry can take several proactive measures:

  • Collaboration and Information Sharing: Collaboration among automakers, suppliers, cybersecurity experts, researchers, and regulators is critical to addressing emerging threats. Information-sharing initiatives and collaborative research can help identify and mitigate new vulnerabilities.
  • Ethical Hacking and Bug Bounty Programs: Encouraging ethical hackers to identify vulnerabilities through bug bounty programs can help uncover security weaknesses early and enable prompt remediation.
  • Continuous Monitoring and Adaptation: Implementing real-time monitoring and intrusion detection systems can help identify and respond to cyber threats. A proactive and adaptive approach to cybersecurity allows the industry to respond to evolving threat landscapes.
  • Consumer Education and Engagement: Educating consumers about automotive cybersecurity and involving them in developing secure technologies can foster trust and promote secure practices among vehicle owners.

Staying ahead of cybersecurity challenges will be an ongoing journey as automotive technology advances. By fostering innovation, collaboration, and vigilance, the industry can chart a path toward a secure and connected future for all road users.

Conclusion

In this article, we explored the multifaceted issue of automotive hacking, which has risen to prominence as vehicles become increasingly connected and sophisticated. We delved into the types of automotive hacking attacks, such as remote hacking and key fob attacks. We highlighted notable real-world incidents that have underscored the urgent need for robust cybersecurity measures. We examined the potential risks and consequences of automotive hacking, including safety concerns, privacy violations, and implications for autonomous vehicles. The industry's response was discussed, emphasizing cybersecurity innovations, ethical hacking, and implementing secure software updates and intrusion detection systems. Legal and regulatory considerations, consumer awareness and empowerment, and the future outlook for automotive cybersecurity were also addressed.

The ongoing importance of addressing automotive hacking and securing vehicles cannot be understated as we look to the future. As technology continues to drive innovation in the automotive industry, new opportunities and challenges will emerge. The safety, privacy, and trust of consumers are paramount, and securing vehicles in an increasingly connected world is a shared responsibility that requires vigilance, adaptability, and collaboration.

In conclusion, securing the automotive future is a collective endeavour that calls for the active participation of all stakeholders. Automakers must remain committed to implementing cutting-edge cybersecurity measures and continuously adapting to emerging threats. Regulators must provide clear guidance and standards to foster a secure and resilient automotive ecosystem. 

Consumers must be informed and empowered to advocate for better vehicle security and take proactive measures to protect themselves. Through this collaborative and determined effort, we can drive toward a safer, more secure, and more connected automotive future—a future where the benefits of technology can be fully realized without compromising our safety and well-being.

0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    Author

    Steve E. Driz, I.S.P., ITCP

    Picture
    View my profile on LinkedIn

    Archives

    March 2025
    February 2025
    January 2025
    November 2024
    October 2024
    September 2024
    July 2024
    June 2024
    April 2024
    March 2024
    February 2024
    January 2024
    December 2023
    November 2023
    October 2023
    September 2023
    August 2023
    July 2023
    June 2023
    May 2023
    April 2023
    March 2023
    February 2023
    January 2023
    December 2022
    June 2022
    February 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    October 2016
    August 2016
    May 2016
    March 2016
    January 2016
    November 2015
    October 2015
    August 2015
    June 2015

    Categories

    All
    0-Day
    2FA
    Access Control
    Advanced Persistent Threat
    AI
    AI Security
    Artificial Intelligence
    ATP
    Awareness Training
    Blockchain
    Botnet
    Bots
    Brute Force Attack
    CASL
    Cloud Security
    Compliance
    COVID 19
    COVID-19
    Cryptocurrency
    Cyber Attack
    Cyberattack Surface
    Cyber Awareness
    Cybercrime
    Cyber Espionage
    Cyber Insurance
    Cyber Security
    Cybersecurity
    Cybersecurity Audit
    Cyber Security Consulting
    Cyber Security Insurance
    Cyber Security Risk
    Cyber Security Threats
    Cybersecurity Tips
    Data Breach
    Data Governance
    Data Leak
    Data Leak Prevention
    Data Privacy
    DDoS
    Email Security
    Endpoint Protection
    Fraud
    GDPR
    Hacking
    Impersonation Scams
    Incident Management
    Insider Threat
    IoT
    Machine Learning
    Malware
    MFA
    Microsoft Office
    Mobile Security
    Network Security Threats
    Phishing Attack
    Privacy
    Ransomware
    Remote Access
    SaaS Security
    Social Engineering
    Supply Chain Attack
    Supply-Chain Attack
    Third Party Risk
    Third-Party Risk
    VCISO
    Virtual CISO
    Vulnerability
    Vulnerability Assessment
    Web Applcation Security
    Web-applcation-security
    Web Application Firewall
    Web Application Protection
    Web Application Security
    Web Protection
    Windows Security
    Zero Trust

    RSS Feed

Picture

1.888.900.DRIZ (3749)

Managed Services

Picture
SME CyberShield
​Web Application Security
​Virtual CISO
Compliance
​Vulnerability Assessment
Free Vulnerability Assessment
Privacy Policy | CASL

About us

Picture
Testimonials
​Meet the Team
​Subsidiaries
​Contact us
​Blog
​
Jobs

Resources & Tools

Picture
​Incident Management Playbook
Sophos authorized partner logo
Picture
© 2025 Driz Group Inc. All rights reserved.
Photo from GotCredit