1.888.900.DRIZ (3749)
The Driz Group
  • Managed Services
    • SME CyberShield
    • Web Application Security >
      • Schedule WAF Demo
    • Virtual CISO
    • Compliance >
      • SOC1 & SOC2
      • GDPR
    • Third-Party Risk Management
    • Vulnerability Assessment >
      • Free Vulnerability Assessment
  • About us
    • Testimonials
    • Meet The Team
    • Resources
    • In the news
    • Careers
    • Subsidiaries
  • Contact
    • Newsletter
  • How WAF Works
  • Blog
  • Managed Services
    • SME CyberShield
    • Web Application Security >
      • Schedule WAF Demo
    • Virtual CISO
    • Compliance >
      • SOC1 & SOC2
      • GDPR
    • Third-Party Risk Management
    • Vulnerability Assessment >
      • Free Vulnerability Assessment
  • About us
    • Testimonials
    • Meet The Team
    • Resources
    • In the news
    • Careers
    • Subsidiaries
  • Contact
    • Newsletter
  • How WAF Works
  • Blog

Cybersecurity Blog

Thought leadership. Threat analysis. Cybersecurity news and alerts.

7/12/2020

0 Comments

How DDoS Threat Landscape Has Evolved Over Time

 
ddos threat landscape

How DDoS Threat Landscape Has Evolved Over Time

Through the years, distributed denial-of-service (DDoS) – a form of cyberattack originating from multiple systems and overwhelming one specific service or website using malicious data or requests – has evolved and grown stronger and more prevalent.

Evolution of the DDoS Threat Landscape

The Morris Worm

DDoS threat has been around ever since humanity decided to interconnect computers. The malicious software dubbed as “Morris worm”, which was unleashed prior to the invention of the World Wide Web, is considered by some as the first DDoS attack.

Morris worm replicated a copy of itself and propagated itself at a remarkable speed to computers belonging to a number of the prestigious colleges and public and private research centers that made up the ARPANET – an early prototype for the internet. On November 2, 1988, in just 24 hours, the Morris worm affected an estimated 6,000 of the approximately 60,000 computers that were then connected to ARPANET.

The unleashing of the Morris worm resulted in slowing to a crawl vital military and university functions and delayed emails for days. The creator of the Morris worm, then 23-year-old Cornell University graduate student Robert Tappan Morris unleashed out the worm by exploiting security vulnerabilities in a specific version of the Unix operating system. The worm was also unleashed by attempting to break into user accounts on an infected machine using brute force attacks, that is, guessing weak passwords similar to modern-day brute force attacks.

MafiaBoy DDoS Attack

While not the first DDoS attack in the World Wide Web era, the DDoS attacks carried out by MafiaBoy, then 15-year old Michael Calce from Montreal, Canada, were notable as this teenager launched a series of high-profile DDoS attacks in February 2000 against large commercial websites, including eBay, Amazon and E*Trade. In carrying out his DDoS attacks, Calce modified the code written by another hacker. Calce compromised nearly 200 university networks and brought this under his control to launch DDoS attacks against specific targets.

In the book "Mafiaboy: A Portrait of the Hacker as a Young Man", Calce wrote that he scanned the internet for university-owned servers withsecurity weaknesses that he could exploit. "Once I found at least one, I ran a program I had found called Hunter to hijack that computer's connection."

Mirai

In the age of Internet of Things (IoT), the DDoS attacks carried out Mirai stand out. Mirai is a malicious software (malware) that compromises poorly secured IoT devices such as wireless routers and security cameras into a botnet to conduct large-scale DDoS attacks. A botnet refers to a network of compromised computers coordinating as one to carry out instructions at the direction of their master – a malicious threat actor.

On September 30, 2016, Mirai source code was leaked online by one of its authors, Paras Jha. The Mirai source code was later used by different malicious actors in launching DDoS attacks.

Mirai exploits the habit of IoT users of not changing the default login details. At its height, nearly 400,000 IoT devices were hijacked by Mirai for DDoS attacks.

One notable DDoS attack utilizing the Mirai source code was the DDoS attack on internet infrastructure services provider Dyn DNS (now Oracle DYN) in October 2016. The DDoS attack on this internet infrastructure, which enslaved 100,000 devices including IP cameras and printers, disrupted the services of major websites such as Amazon, Netflix, Reddit, Spotify and Twitter.

Memcached-Based DDoS Attacks

In February 2018, DDoS attackers used a new attack method that exploited a lesser number of devices but produced a bigger punch. GitHub reported on February 28, 2018 that GitHub.com was unavailable from 17:21 to 17:26 UTC and intermittently unavailable from 17:26 to 17:30 UTC due to a DDoS attack. The DDoS attack on GitHub peaked at 1.35 Tbps – then setting the record of the largest DDoS attack.

In analyzing the DDoS attack on GitHub, Cloudflare reported that the attack on GitHub exploited 5,729 memcached servers that were inadvertently made accessible on the internet. Memcached is an open-source distributed memory caching system for speeding up applications.

"Launching such an attack [by exploiting Memcached] is easy," Cloudflare said. "First the attacker implants a large payload on an exposed memcached server. Then, the attacker spoofs the 'get' request message with target Source IP. In practice, we've seen a 15 byte request result in a 750kB response (that's a 51,200x amplification)."

With nearly 100,000 Memcached servers exposed to the internet, Cloudflare said at that time that it's expecting to see much larger attacks in the future.

Days after the GitHub attack, NetScout reported an even larger DDoS attack, victimizing a US-based service provider. This time peaking at 1.7Tbps. "The attack utilized a Memcached ... Reflection & Amplification vector to accomplish such a massive attack," NetScout said.

CLDAP-Based DDoS Attack

In the 1st quarter of 2020, Amazon reported that in February of this year, it detected and mitigated a DDoS attack targeting an AWS customer. The DDoS attack, Amazon said, peaked at 2.3 Tbps and caused three days of “elevated threat".

According to Amazon, the DDoS attack on one of its AWS customers exploited Connection-less Lightweight Directory Access Protocol (CLDAP) web servers. CLDAP is used to connect, search, and modify internet-shared directories. DDoS attackers have made CLDAPexploitation as part of their arsenal since 2016.

Imperva's 2019 Global DDoS Threat Landscape Report found that large-scale DDoS attacks were outside of the norm. "Overall, we saw attacks that were smaller, shorter, and more persistent," Imperva said. "While this trend may be indicative of attackers’ attempts to wreak havoc before a mitigation service kicks in, it’s no match for Imperva, where time to mitigation is near zero."

Many companies that call us have fallen victim to a DDoS attack, and paid ransom to cybercriminals to stop the attacks and resume normal business operations.

Protect your website, web applications and your network today and avoid costly business interruptions.

Using state of the art technology, our team will mitigate a DDoS attack in just 10-seconds, protecting your revenues, your assets and your reputation.

Call today 1.888.900.DRIZ (3749) or contact us online.

0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    Author

    Steve E. Driz, I.S.P., ITCP

    Picture
    View my profile on LinkedIn

    Archives

    March 2025
    February 2025
    January 2025
    November 2024
    October 2024
    September 2024
    July 2024
    June 2024
    April 2024
    March 2024
    February 2024
    January 2024
    December 2023
    November 2023
    October 2023
    September 2023
    August 2023
    July 2023
    June 2023
    May 2023
    April 2023
    March 2023
    February 2023
    January 2023
    December 2022
    June 2022
    February 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    October 2016
    August 2016
    May 2016
    March 2016
    January 2016
    November 2015
    October 2015
    August 2015
    June 2015

    Categories

    All
    0-Day
    2FA
    Access Control
    Advanced Persistent Threat
    AI
    AI Security
    Artificial Intelligence
    ATP
    Awareness Training
    Blockchain
    Botnet
    Bots
    Brute Force Attack
    CASL
    Cloud Security
    Compliance
    COVID 19
    COVID-19
    Cryptocurrency
    Cyber Attack
    Cyberattack Surface
    Cyber Awareness
    Cybercrime
    Cyber Espionage
    Cyber Insurance
    Cyber Security
    Cybersecurity
    Cybersecurity Audit
    Cyber Security Consulting
    Cyber Security Insurance
    Cyber Security Risk
    Cyber Security Threats
    Cybersecurity Tips
    Data Breach
    Data Governance
    Data Leak
    Data Leak Prevention
    Data Privacy
    DDoS
    Email Security
    Endpoint Protection
    Fraud
    GDPR
    Hacking
    Impersonation Scams
    Incident Management
    Insider Threat
    IoT
    Machine Learning
    Malware
    MFA
    Microsoft Office
    Mobile Security
    Network Security Threats
    Phishing Attack
    Privacy
    Ransomware
    Remote Access
    SaaS Security
    Social Engineering
    Supply Chain Attack
    Supply-Chain Attack
    Third Party Risk
    Third-Party Risk
    VCISO
    Virtual CISO
    Vulnerability
    Vulnerability Assessment
    Web Applcation Security
    Web-applcation-security
    Web Application Firewall
    Web Application Protection
    Web Application Security
    Web Protection
    Windows Security
    Zero Trust

    RSS Feed

Picture

1.888.900.DRIZ (3749)

Managed Services

Picture
SME CyberShield
​Web Application Security
​Virtual CISO
Compliance
​Vulnerability Assessment
Free Vulnerability Assessment
Privacy Policy | CASL

About us

Picture
Testimonials
​Meet the Team
​Subsidiaries
​Contact us
​Blog
​
Jobs

Resources & Tools

Picture
​Incident Management Playbook
Sophos authorized partner logo
Picture
© 2025 Driz Group Inc. All rights reserved.
Photo from GotCredit