1.888.900.DRIZ (3749)
The Driz Group
  • Managed Services
    • Web Application Security >
      • Schedule WAF Demo
    • Virtual CISO
    • Compliance >
      • SOC1 & SOC2
      • GDPR
    • Third-Party Risk Management
    • Vulnerability Assessment >
      • Free Vulnerability Assessment
  • About us
    • Testimonials
    • Meet The Team
    • Resources
    • In the news
    • Careers
    • Subsidiaries
  • Contact
    • Newsletter
  • How WAF Works
  • Blog
  • Managed Services
    • Web Application Security >
      • Schedule WAF Demo
    • Virtual CISO
    • Compliance >
      • SOC1 & SOC2
      • GDPR
    • Third-Party Risk Management
    • Vulnerability Assessment >
      • Free Vulnerability Assessment
  • About us
    • Testimonials
    • Meet The Team
    • Resources
    • In the news
    • Careers
    • Subsidiaries
  • Contact
    • Newsletter
  • How WAF Works
  • Blog

Cybersecurity Blog

Thought leadership. Threat analysis. Cybersecurity news and alerts.

1/11/2018

0 Comments

Huawei IoT Exploit Code Meant for DDoS Attack Released to the Public

 
Huawei exploit code DDoS attack

Huawei IoT Exploit Code Meant for DDoS Attack Released to the Public

Another malware code that’s meant to cause distributed denial-of-service (DDoS) has recently been made public on Pastebin website.

The publication of the code of a DDoS threat can’t be taken lightly. Whenever new cyberexploits become publicly available, cybercriminals are quick to add these to their attack arsenal.

When the Mirai malware code – another DDoS threat was made public – it unleashed unprecedented DDoS attacks.

The newly published malware code is a Mirai variant and particularly targets the vulnerability in Huawei home router model HG532. According to security researchers at NewSky Security, the newly published malware has already been used in cyberattacks, including the Satori DDoS attack.

With the release of the full working code of this Mirai variant, security researchers at NewSky Security said that “we expect its usage in more cases by script kiddies and copy-paste botnet masters.”

Considering that Huawei retains a significant share of the router market, exploitation of these IoT devices can have a significant effect. According to IDC, Huawei's total router market share increased from 18.9% in the 2nd quarter of 2016 to 25.2% in the 2nd quarter of 2017.

What is Satori?

Satori is an updated variant of the Mirai malware. It particularly exploits the vulnerability in Huawei home router model HG532. The vulnerability allows remote code execution, enabling attackers to access and make changes to Huawei home routers found in different parts of the world.

Unlike the Mirai malware which relies on default usernames and passwords to infect IoT devices, Satori doesn’t need usernames and passwords. Security researchers at Qihoo 360 Netlab said, “The bot [Satori] itself now does NOT rely on loader/scanner mechanism to perform remote planting, instead, bot itself performs the scan activity. This worm like behavior is quite significant.”

According to the security researchers at Qihoo 360 Netlab, in December 2017, the Satori malware was able to infect over 280,000 Huawei routers in just 12 hours.

In November 2017, security researchers at Check Point reported that hundreds of thousands of Satori exploits have already been found in the wild. Check Point discreetly informed Huawei about the security vulnerability and soon thereafter the company issued a security update.

“An authenticated attacker could send malicious packets to port 37215 to launch attacks,” Huawei said in acknowledging the Satori exploit. “Successful exploit could lead to the remote execution of arbitrary code.”

What is Mirai?

Satori’s code is based on Mirai malware code. In late September 2016, the hacker simply known as “Anna-senpai” made public the Mirai code.

What the original Mirai does was used the internet to search for IoT devices (including wireless cameras and routers) with weak security – particularly those with default usernames and passwords, control these devices and use them to attack targets such as other computers and websites. According to Anna-senpai, 380,000 IoT devices were infected with the Mirai malware to stage a DDoS attack against the Krebs on Security website.

Barely a month after the Mirai was published online, the DDoS attacks against Dyn happened. Dyn is a domain name service (DNS) provider which many websites rely upon. The DDoS attacks against Dyn resulted in temporarily shutting down popular websites like Amazon, Twitter and Netflix.

“We are able to confirm that a significant volume of attack traffic originated from Mirai-based botnets,” Dyn said in a statement. According to the company, 100,000 IoT devices were infected with the Mirai malware to attack its infrastructure.

In early December last year, three men, Paras Jha, Josiah White and Dalton Norman, pleaded guilty in creating and operating the Mirai malware in violation of the US Computer Fraud and Abuse Act.

“In the summer and fall of 2016, White, Jha, and Norman created a powerful botnet – a collection of computers infected with malicious software and controlled as a group without the knowledge or permission of the computers’ owners,” the US Department of Justice said in a statement.

The US Department of Justice added, “The defendants used the botnet to conduct a number of powerful distributed denial-of-service, or ‘DDOS’ attacks, which occur when multiple computers, acting in unison, flood the Internet connection of a targeted computer or computers.”

Jha, in particular, pleaded guilty in conducting a series of DDoS attacks against networks of Rutgers University from November 2014 to September 2016. The DDoS attack on Rutgers University, according to the Department of Defense, temporarily shut down the university’s central authentication server, which maintained the gateway portal through which students, faculty and staff deliver assignments and assessments.

According to the US Department of Justice, White, Jha and Norman’s involvement with the original Mirai ended in the fall of 2016, when Jha publicly released the source code of Mirai. The Justice Department said, “Since then, other criminal actors have used Mirai variants in a variety of other attacks.”

US Acting Assistant Attorney General Cronan said that the Mirai is a powerful reminder that “as we continue on a path of a more interconnected world, we must guard against the threats posed by cybercriminals that can quickly weaponize technological developments to cause vast and varied types of harm.”

Since the release of the Mirai code, there has also been a noticeable increase in DDoS-for-hire – a group of cybercriminals that provides paying customers with distributed denial of service (DDoS) attack service to anonymously attack any internet-connected target.

Imperva Incapsula reported that in the third quarter of 2017, majority or 90.2% of DDoS attacks were under 10 Mpps and were predominantly the result of DDoS-for-hire activity.

DDoS attacks are costly. They can make your organization’s website slow or inaccessible. They can disrupt business activities, prevent customers from accessing online accounts and bring about significant costs in remedying the DDoS effects.

Prevention

Huawei recommends the following measures to circumvent or prevent your Huawei routers from being infected by Satori malware:

  • Configure the built-in firewall function
  • Change the default password
  • Deploy a firewall at the carrier side
  • Deploy Huawei NGFWs (Next Generation Firewall) or data center firewalls
  • Upgrade the IPS signature database to the latest version IPS_H20011000_2017120100 released on December 1, 2017

Contact us at The Driz Group if you want more information on how to protect your business from DDoS attacks in under an hour, with no hardware to buy, and no resources or ongoing maintenance.

0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    Author

    Steve E. Driz, I.S.P., ITCP

    Picture
    View my profile on LinkedIn

    Archives

    March 2023
    February 2023
    January 2023
    December 2022
    June 2022
    May 2022
    February 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    October 2016
    August 2016
    May 2016
    March 2016
    January 2016
    November 2015
    October 2015
    August 2015
    June 2015

    Categories

    All
    0-Day
    2FA
    Access Control
    Advanced Persistent Threat
    AI
    Artificial Intelligence
    ATP
    Awareness Training
    Botnet
    Bots
    Brute Force Attack
    CASL
    Cloud Security
    Compliance
    COVID 19
    COVID-19
    Cryptocurrency
    Cyber Attack
    Cyberattack Surface
    Cyber Awareness
    Cyber Espionage
    Cybersecurity
    Cyber Security
    Cyber Security Consulting
    Cyber Security Insurance
    Cyber Security Risk
    Cyber Security Threats
    Cybersecurity Tips
    Data Breach
    Data Governance
    Data Leak
    Data Leak Prevention
    DDoS
    Email Security
    Fraud
    GDPR
    Hacking
    Impersonation Scams
    IoT
    Malware
    MFA
    Microsoft Office
    Mobile Security
    Network Security Threats
    Phishing Attack
    Privacy
    Ransomware
    Remote Access
    SaaS Security
    Social Engineering
    Supply Chain Attack
    Supply-Chain Attack
    Third-Party Risk
    Virtual CISO
    Vulnerability
    Vulnerability Assessment
    Web Applcation Security
    Web-applcation-security
    Web Application Firewall
    Web Application Protection
    Web Application Security
    Web Protection
    Windows Security
    Zero Trust

    RSS Feed

Picture

1.888.900.DRIZ (3749)

Managed Services

Picture
Web Application Security
​Virtual CISO
Compliance
​Vulnerability Assessment
Free Vulnerability Assessment
Privacy Policy | CASL

About us

Picture
Testimonials
​Meet the Team
​Subsidiaries
​Contact us
​Blog
​
Jobs

Resources & Tools

Picture
​Incident Management Playbook
Sophos authorized partner logo
Picture
© 2023 Driz Group Inc. All rights reserved.
Photo used under Creative Commons from GotCredit