1.888.900.DRIZ (3749)
The Driz Group
  • Managed Services
    • Web Application Security >
      • Schedule WAF Demo
    • Virtual CISO
    • Compliance >
      • SOC1 & SOC2
      • GDPR
    • Third-Party Risk Management
    • Vulnerability Assessment >
      • Free Vulnerability Assessment
  • About us
    • Testimonials
    • Meet The Team
    • Resources
    • In the news
    • Careers
    • Subsidiaries
  • Contact
    • Newsletter
  • How WAF Works
  • Blog
  • Managed Services
    • Web Application Security >
      • Schedule WAF Demo
    • Virtual CISO
    • Compliance >
      • SOC1 & SOC2
      • GDPR
    • Third-Party Risk Management
    • Vulnerability Assessment >
      • Free Vulnerability Assessment
  • About us
    • Testimonials
    • Meet The Team
    • Resources
    • In the news
    • Careers
    • Subsidiaries
  • Contact
    • Newsletter
  • How WAF Works
  • Blog

Cybersecurity Blog

Thought leadership. Threat analysis. Cybersecurity news and alerts.

9/15/2017

0 Comments

New Bluetooth Malware Puts Billions of Devices at Risk

 
bluetooth vulnerability

New Bluetooth Malware Puts Billions of Devices at Risk

​A new malicious software dubbed as “BlueBorne” puts billions of Bluetooth-enabled devices at risk. 

Understanding Bluetooth

​Dr. Jaap Haartsen invented the Bluetooth while working at Ericsson in the 1990s. Bluetooth was named after the 10th-century king of Denmark King Harald Blåtand (blue-tooth in English), who famously united Scandinavia. Just as King Bluetooth united Scandinavia, Dr. Haartsen’s invention unites or connects devices.
 
Bluetooth is currently the most widely-used protocol for short-range communications. It's used in a wide range of devices, from personal computers to smart phones, consumer electronics devices (smart TVs, printers), medical and health devices, home automation and autonomous cars.
 
Bluetooth is now licensed, managed and maintained by the Bluetooth Special Interests Group (SIG). Tech giants Google, Microsoft, Apple, Intel and IBM are some of the group members.

How BlueBorne Works

1. BlueBorne attacks devices via Bluetooth.
The security research firm Armis first identified the BlueBorne malware. Researchers at the research firm found that BlueBorne malware specifically exploits the security flaw in Bluetooth-enabled devices running on Windows, Android, pre-version 10 of iOS and Linux operating systems, regardless of the Bluetooth version in use.
 
This means that every single computer, mobile device or IoT device running on one of the above-mentioned operating systems is at risk. There are currently 2 billion Android users, 500 million Windows 10 users, 1 billion Apple users, and 8 billion IoT users.
 
Affected devices include all Android phones, tablets and wearables (except those using only Bluetooth Low Energy), all Windows computers since Windows Vista and all Linux devices like Samsung Gear S3, Samsung Smart TVs and Samsung Family Hub.
 
2. BlueBorne spreads through the air.
BlueBorne is alarming as it operates through the air. Unlike traditional cyber attacks, no action is required from the victim to enable the BlueBorne attack – no need to download a malicious file or click on a link.
 
Once the malware detects the Bluetooth is active on a device that runs on Windows, Android, pre-version 10 of iOS or Linux operating system, it attacks it despite the fact that the targeted device isn’t paired with the attacker’s device or set on discoverable mode.
 
“Unlike the common misconception, Bluetooth enabled devices are constantly searching for incoming connections from any devices, and not only those they have been paired with,” Armis said.
 
To initiate BlueBorne, the attacker must be near the targeted user and the Bluetooth feature of the target user's device must be turned on. Billions of devices are at risk as Bluetooth is turned on by default on many devices. Many users also prefer to turn on Bluetooth most of the time to conveniently connect it to keyboards, headphones and other various IoT devices.
 
The airborne operation of BlueBorne is problematic in the following ways:

​a) Highly Infectious

Spreading from one device to another through the air makes BlueBorne highly infectious since the Bluetooth process enjoys high privileges on all operating systems. Exploiting Bluetooth gives hackers full control over the device.
 
b) Bypasses Traditional Cyber Security Measures
As BlueBorne is spread through the air, it bypasses traditional cyber security measures. Typical security measures are defenseless against airborne attacks. BlueBorne attackers can bypass secure internal “air-gapped” networks – a security measure that isolates a computer or network and prevents it from establishing an external connection.
 
"These silent attacks are invisible to traditional security controls and procedures. Companies don't monitor these types of device-to-device connections in their environment, so they can't see these attacks or stop them," Yevgeny Dibrov, CEO of Armis, said in a statement. "The research illustrates the types of threats facing us in this new connected age."

3 Ways BlueBorne Attackers Could Exploit Your Device

​1. Take Full Control of Your Device for Criminal Activities
BlueBorne attackers could remotely execute code on your vulnerable device, allowing the attackers to take full control over your device, access corporate networks, systems and data. With full access to your device, hackers could perform criminal activities, including ransomware and data theft.
 
2. Create Large Botnets Similar to the Mirai Botnet
Mirai botnet uses compromised IoT devices to carry out crippling Distributed Denial of Service attacks (DDoS) attacks. In 2016, crippling DDoS attacks were waged against the website of cyber security blogger Brian Krebs and a French web hosting company. BlueBorne attackers, for instance, could use your compromised device, together with other compromised devices, to execute DDoS against a particular website. 
 
3. Perform Man-in-The-Middle Attack
BlueBorne attackers could perform a man-in-the-middle attack on your device.
 
Man-in-the-middle attack happens when attackers redirect the communication between two users to the attackers’ computer without the knowledge of the original two users.
 
“An attacker who successfully exploited this vulnerability could perform a man-in-the-middle attack and force a user's computer to unknowingly route traffic through the attacker's computer,” Microsoft said in its September 12, 2017 security bulletin. “The attacker can then monitor and read the traffic before sending it on to the intended recipient.”
 
Microsoft calls this Bluetooth vulnerability as "Microsoft Bluetooth Driver Spoofing Vulnerability".

How to Prevent BlueBorne Attacks 

​1. Turn Bluetooth Off
The safest way to prevent a BlueBorne attack is by turning off the Bluetooth feature on your device. This malware can access your device only when it’s in the active mode. If it’s turned off, the malware can’t successfully infiltrate your device.
 
2. Update Your Operating System
It’s advisable to keep your operating system up-to-date. Not all operating systems though have patched or issued a security update that fixes BlueBorne vulnerability.
 
According to Armis, it informed Google about the BlueBorne issue on April 19, 2017. Google released a public security update and security bulletin on September 4th, 2017.
 
Microsoft was informed by Armis about the BlueBorne issue on April 19, 2017. Microsoft released security updates on July 11, 2017.
 
Apple was informed about BlueBorne on August 9, 2017. Apple corrected this vulnerability with its latest iOS and tvOS.
 
Linux was informed by Armis on August 15 and 17, 2017 and on September 5, 2017. As of September 12, 2017, Armis said, Linux hasn't yet issued a public security update to patch the BlueBorne malware.
0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    Author

    Steve E. Driz, I.S.P., ITCP

    Picture
    View my profile on LinkedIn

    Archives

    January 2023
    December 2022
    June 2022
    May 2022
    February 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    October 2016
    August 2016
    May 2016
    March 2016
    January 2016
    November 2015
    October 2015
    August 2015
    June 2015

    Categories

    All
    0-Day
    2FA
    Access Control
    Advanced Persistent Threat
    AI
    Artificial Intelligence
    ATP
    Awareness Training
    Botnet
    Bots
    Brute Force Attack
    CASL
    Cloud Security
    Compliance
    COVID 19
    COVID-19
    Cryptocurrency
    Cyber Attack
    Cyberattack Surface
    Cyber Awareness
    Cyber Espionage
    Cybersecurity
    Cyber Security
    Cyber Security Consulting
    Cyber Security Insurance
    Cyber Security Risk
    Cyber Security Threats
    Data Breach
    Data Governance
    Data Leak
    Data Leak Prevention
    DDoS
    Email Security
    Fraud
    GDPR
    Hacking
    IoT
    Malware
    MFA
    Microsoft Office
    Mobile Security
    Network Security Threats
    Phishing Attack
    Privacy
    Ransomware
    Remote Access
    SaaS Security
    Social Engineering
    Supply Chain Attack
    Supply-Chain Attack
    Third-Party Risk
    Virtual CISO
    Vulnerability
    Vulnerability Assessment
    Web Applcation Security
    Web-applcation-security
    Web Application Firewall
    Web Application Protection
    Web Application Security
    Web Protection
    Windows Security
    Zero Trust

    RSS Feed

Picture

1.888.900.DRIZ (3749)

Managed Services

Picture
Web Application Security
​Virtual CISO
Compliance
​Vulnerability Assessment
Free Vulnerability Assessment
Privacy Policy | CASL

About us

Picture
Testimonials
​Meet the Team
​Subsidiaries
​Contact us
​Blog
​
Jobs

Resources & Tools

Picture
​Incident Management Playbook
Sophos authorized partner logo
Picture
© 2023 Driz Group Inc. All rights reserved.
Photo used under Creative Commons from GotCredit