1.888.900.DRIZ (3749)
The Driz Group
  • Managed Services
    • Web Application Security >
      • Schedule WAF Demo
    • Virtual CISO
    • Compliance >
      • SOC1 & SOC2
      • GDPR
    • Third-Party Risk Management
    • Vulnerability Assessment >
      • Free Vulnerability Assessment
  • About us
    • Testimonials
    • Meet The Team
    • Resources
    • In the news
    • Careers
    • Subsidiaries
  • Contact
    • Newsletter
  • How WAF Works
  • Blog
  • Managed Services
    • Web Application Security >
      • Schedule WAF Demo
    • Virtual CISO
    • Compliance >
      • SOC1 & SOC2
      • GDPR
    • Third-Party Risk Management
    • Vulnerability Assessment >
      • Free Vulnerability Assessment
  • About us
    • Testimonials
    • Meet The Team
    • Resources
    • In the news
    • Careers
    • Subsidiaries
  • Contact
    • Newsletter
  • How WAF Works
  • Blog

Cybersecurity Blog

Thought leadership. Threat analysis. Cybersecurity news and alerts.

10/17/2017

0 Comments

'Secure' Wi-Fi Standard Has Serious Security Flaws

 
Wifi hack

'Secure' Wi-Fi Standard Has Serious Security Flaws

Researchers from the University of Leuven in Belgium have discovered a series of serious wi-fi security flaws that essentially eliminate wi-fi privacy.

These series of wi-fi vulnerabilities collectively dubbed as “Krack”, short for key reinstallation attacks, can access data that was previously presumed to be safely encrypted. Krack attackers can steal wi-fi passwords, chat messages, emails, photos and other sensitive information. It’s also possible, depending on device use and the network configuration, for Krack attackers to inject malicious software like ransomware into websites.

The University of Leuven researchers, in their paper entitled “Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2” (PDF) said that “every Wi-Fi device is vulnerable” to Krack attacks.

"The weaknesses are in the Wi-Fi standard itself, and not in individual products or implementations,” lead researcher Mathy Vanhoef said.

Wi-Fi Alliance, a non-profit organization that promotes wi-fi technology and certifies wi-fi products, said, “Recently published research identified vulnerabilities in some Wi-Fi devices where those devices reinstall network encryption keys under certain conditions, disabling replay protection and significantly reducing the security of encryption.”

 

For its part, the International Consortium for Advancement of Cybersecurity on the Internet (ICASI), in a statement said, “Depending on the specific device configuration, successful exploitation of these vulnerabilities could allow unauthenticated attackers to perform packet replay, decrypt wireless packets, and to potentially forge or inject packets into a wireless network.”

ICASI members include Amazon, Cisco Systems, IBM, Intel Corporation, Juniper Networks, Microsoft Corporation and Oracle Corporation.

How Krack Works

For Krack to work, the attacker must be within the range of a victim. As proof-of-concept, lead researcher Vanhoef executed Krack attacks against wi-fi devices. Vanhoef was able to show that Krack not just steals login credentials – including email addresses and passwords – but all data that the victim transmits or sends was decrypted.

It’s also doable for Krack attackers, depending on the network setup and the device being used, to decrypt, not just data sent over wi-fi but also data sent towards the victim, for instance, the content of a website.

“Although websites or apps may use HTTPS as an additional layer of protection, we warn that this extra protection can (still) be bypassed in a worrying number of situations,” Vanhoef said. “For example, HTTPS was previously bypassed in non-browser software, in Apple's iOS and OS X, in Android apps, in Android apps again, in banking apps, and even in VPN apps.”

Krack is able to decrypt not just data sent over wi-fi but also data sent towards the victim by exploiting the vulnerabilities in the 4-way handshake of the Wi-Fi Protected Access 2 (WPA2) protocol.

The 4-way handshake is a 14-year-old technology that supposedly ensures wi-fi privacy by installing a fresh and unique encryption key that’ll be used to encrypt all subsequent traffic every time a device joins a protected wi-fi network.

Instead of installing a fresh and unique encryption key, Krack tricks the device into reinstalling an already-in-use encryption key. This is done by manipulating and replaying handshake messages. The researchers also found that Krack similarly exploits other wi-fi handshakes, including PeerKey handshake, the group key handshake and the Fast BSS Transition (FT) handshake.

As mentioned, Krack is a series of wi-fi vulnerabilities. This means that not just one wi-fi vulnerability is exploited by Krack. The Common Vulnerabilities and Exposures (CVE) – a dictionary of common names for publicly known cyber security vulnerabilities – list the following specific vulnerabilities related to Krack:

  • CVE-2017-13077: Reinstallation of the pairwise encryption key (PTK-TK) in the 4-way handshake.
  • CVE-2017-13078: Reinstallation of the group key (GTK) in the 4-way handshake.
  • CVE-2017-13079: Reinstallation of the integrity group key (IGTK) in the 4-way handshake.
  • CVE-2017-13080: Reinstallation of the group key (GTK) in the group key handshake.
  • CVE-2017-13081: Reinstallation of the integrity group key (IGTK) in the group key handshake.
  • CVE-2017-13082: Accepting a retransmitted Fast BSS Transition (FT) Reassociation Request and reinstalling the pairwise encryption key (PTK-TK) while processing it.
  • CVE-2017-13084: Reinstallation of the STK key in the PeerKey handshake.
  • CVE-2017-13086: Reinstallation of the Tunneled Direct-Link Setup (TDLS) PeerKey (TPK) key in the TDLS handshake.
  • CVE-2017-13087: Reinstallation of the group key (GTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame.
  • CVE-2017-13088: Reinstallation of the integrity group key (IGTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame.

According to Wi-Fi Alliance, there’s no evidence that Krack has been exploited maliciously in the wild.

How to Prevent Krack Attacks

To prevent Krack attacks, make sure to update your wi-fi device as soon as patch or security update becomes available. A security update ensures that an encryption key is only installed once, preventing Krack attacks.

Password change of your wi-fi network won’t stop Krack attacks. The only remedy is to apply the patch or security update of your wi-fi device as soon as it becomes available. It’s also important to update your router’s firmware. While it’s important to patch or apply the latest security updates of your wi-fi and router, it also pays to change the wi-fi password as a precaution.

According to Vanhoef, they notified wi-fi manufacturers about the Krack issue on July 14, 2017. They also notified the Computer Emergency Response Team Coordination Center (CERT/CC) – the world’s first computer emergency response team for internet security incidents. CERT/CC, in turn, issued a broad notification to wi-fi manufacturers on August 28, 2017 about this issue.

“We have released a security update to address this issue,” Microsoft spokesperson told The Verge. “Customers who apply the update, or have automatic updates enabled, will be protected. We continue to encourage customers to turn on automatic updates to help ensure they are protected.”

Windows updates released last October 10, according to Microsoft, addressed this issue. The company said it “withheld disclosure until other vendors could develop and release updates”.

“Wi-Fi Alliance now requires testing for this vulnerability within our global certification lab network and has provided a vulnerability detection tool for use by any Wi-Fi Alliance member,” the alliance said. “Wi-Fi Alliance is also broadly communicating details on this vulnerability and remedies to device vendors and encouraging them to work with their solution providers to rapidly integrate any necessary patches.”

0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    Author

    Steve E. Driz, I.S.P., ITCP

    Picture
    View my profile on LinkedIn

    Archives

    March 2023
    February 2023
    January 2023
    December 2022
    June 2022
    May 2022
    February 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    October 2016
    August 2016
    May 2016
    March 2016
    January 2016
    November 2015
    October 2015
    August 2015
    June 2015

    Categories

    All
    0-Day
    2FA
    Access Control
    Advanced Persistent Threat
    AI
    Artificial Intelligence
    ATP
    Awareness Training
    Botnet
    Bots
    Brute Force Attack
    CASL
    Cloud Security
    Compliance
    COVID 19
    COVID-19
    Cryptocurrency
    Cyber Attack
    Cyberattack Surface
    Cyber Awareness
    Cyber Espionage
    Cybersecurity
    Cyber Security
    Cyber Security Consulting
    Cyber Security Insurance
    Cyber Security Risk
    Cyber Security Threats
    Cybersecurity Tips
    Data Breach
    Data Governance
    Data Leak
    Data Leak Prevention
    DDoS
    Email Security
    Fraud
    GDPR
    Hacking
    Impersonation Scams
    IoT
    Malware
    MFA
    Microsoft Office
    Mobile Security
    Network Security Threats
    Phishing Attack
    Privacy
    Ransomware
    Remote Access
    SaaS Security
    Social Engineering
    Supply Chain Attack
    Supply-Chain Attack
    Third-Party Risk
    Virtual CISO
    Vulnerability
    Vulnerability Assessment
    Web Applcation Security
    Web-applcation-security
    Web Application Firewall
    Web Application Protection
    Web Application Security
    Web Protection
    Windows Security
    Zero Trust

    RSS Feed

Picture

1.888.900.DRIZ (3749)

Managed Services

Picture
Web Application Security
​Virtual CISO
Compliance
​Vulnerability Assessment
Free Vulnerability Assessment
Privacy Policy | CASL

About us

Picture
Testimonials
​Meet the Team
​Subsidiaries
​Contact us
​Blog
​
Jobs

Resources & Tools

Picture
​Incident Management Playbook
Sophos authorized partner logo
Picture
© 2023 Driz Group Inc. All rights reserved.
Photo used under Creative Commons from GotCredit